کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4653830 | 1632790 | 2013 | 17 صفحه PDF | دانلود رایگان |

Polar graphs generalise bipartite graphs, cobipartite graphs, and split graphs, and they constitute a special type of matrix partitions. A graph is polar if its vertex set can be partitioned into two, such that one part induces a complete multipartite graph and the other part induces a disjoint union of complete graphs. Deciding whether a given arbitrary graph is polar, is an NPNP-complete problem. Here, we show that for permutation graphs this problem can be solved in polynomial time. The result is surprising, as related problems like achromatic number and cochromatic number are NPNP-complete on permutation graphs. We give a polynomial-time algorithm for recognising graphs that are both permutation and polar. Prior to our result, polarity has been resolved only for chordal graphs and cographs.
Journal: European Journal of Combinatorics - Volume 34, Issue 3, April 2013, Pages 576–592