کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4653914 1632799 2012 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The symmetric and unimodal expansion of Eulerian polynomials via continued fractions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
The symmetric and unimodal expansion of Eulerian polynomials via continued fractions
چکیده انگلیسی

This paper was motivated by a conjecture of Brändén [P. Brändén, Actions on permutations and unimodality of descent polynomials, European J. Combin. 29 (2) (2008) 514–531] about the divisibility of the coefficients in an expansion of generalized Eulerian polynomials, which implies the symmetric and unimodal property of the Eulerian numbers. We show that such a formula with the conjectured property can be derived from the combinatorial theory of continued fractions. We also discuss an analogous expansion for the corresponding formula for derangements and prove a (p,q)(p,q)-analogue of the fact that the (-1)-evaluation of the enumerator polynomials of permutations (resp. derangements) by the number of excedances gives rise to tangent numbers (resp. secant numbers). The (p,q)(p,q)-analogue unifies and generalizes our recent results [H. Shin, J. Zeng, The qq-tangent and qq-secant numbers via continued fractions, European J. Combin. 31 (7) (2010) 1689–1705] and that of Josuat-Vergès [M. Josuat-Vergés, A qq-enumeration of alternating permutations, European J. Combin. 31 (7) (2010) 1892–1906].

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 33, Issue 2, February 2012, Pages 111–127
نویسندگان
, ,