کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4653962 1632803 2011 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Binary nullity, Euler circuits and interlace polynomials
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Binary nullity, Euler circuits and interlace polynomials
چکیده انگلیسی

A theorem of Cohn and Lempel [M. Cohn, A. Lempel, Cycle decomposition by disjoint transpositions, J. Combin. Theory Ser. A 13 (1972) 83–89] gives an equality relating the number of circuits in a directed circuit partition of a 2-in, 2-out digraph to the GF(2)GF(2)-nullity of an associated matrix. This equality is essentially equivalent to the relationship between directed circuit partitions of 2-in, 2-out digraphs and vertex-nullity interlace polynomials of interlace graphs. We present an extension of the Cohn–Lempel equality that describes arbitrary circuit partitions in (undirected) 4-regular graphs. The extended equality incorporates topological results that have been of use in knot theory, and it implies that if HH is obtained from an interlace graph by attaching loops at some vertices then the vertex-nullity interlace polynomial qN(H)qN(H) is essentially the generating function for certain circuit partitions of an associated 4-regular graph.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 32, Issue 6, August 2011, Pages 944–950
نویسندگان
,