کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4653986 1632807 2011 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Global Maker–Breaker games on sparse graphs
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Global Maker–Breaker games on sparse graphs
چکیده انگلیسی

In this paper we consider Maker–Breaker games, played on the edges of sparse   graphs. For a given graph property PP we seek a graph (board of the game) with the smallest number of edges on which Maker can build a subgraph that satisfies PP. In this paper we focus on global   properties. We prove the following results: (1) for the positive minimum degree game, there is a winning board with nn vertices and about 10n/710n/7 edges, on the other hand, at least 11n/811n/8 edges are required; (2) for the spanning kk-connectivity game, there is a winning board with nn vertices and (1+ok(1))kn(1+ok(1))kn edges; (3) for the Hamiltonicity game, there is a winning board of constant average degree; (4) for a tree TT on nn vertices of bounded maximum degree ΔΔ, there is a graph GG on nn vertices and at most f(Δ)⋅nf(Δ)⋅n edges, on which Maker can construct a copy of TT. We also discuss biased versions of these games and argue that the picture changes quite drastically there.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 32, Issue 2, February 2011, Pages 162–177
نویسندگان
, , , ,