کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4653987 1632807 2011 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Minimal paths in the commuting graphs of semigroups
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Minimal paths in the commuting graphs of semigroups
چکیده انگلیسی

Let SS be a finite non-commutative semigroup. The commuting graph of SS, denoted G(S)G(S), is the graph whose vertices are the non-central elements of SS and whose edges are the sets {a,b}{a,b} of vertices such that a≠ba≠b and ab=baab=ba. Denote by T(X)T(X) the semigroup of full transformations on a finite set XX. Let JJ be any ideal of T(X)T(X) such that JJ is different from the ideal of constant transformations on XX. We prove that if |X|≥4|X|≥4, then, with a few exceptions, the diameter of G(J)G(J) is 55. On the other hand, we prove that for every positive integer nn, there exists a semigroup SS such that the diameter of G(S)G(S) is nn.We also study the left paths in G(S)G(S), that is, paths a1−a2−⋯−ama1−a2−⋯−am such that a1≠ama1≠am and a1ai=amaia1ai=amai for all i∈{1,…,m}i∈{1,…,m}. We prove that for every positive integer n≥2n≥2, except n=3n=3, there exists a semigroup whose shortest left path has length nn. As a corollary, we use the previous results to solve a purely algebraic old problem posed by B.M. Schein.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 32, Issue 2, February 2011, Pages 178–197
نویسندگان
, , ,