کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4654002 1632807 2011 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Enumeration of connected Catalan objects by type
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Enumeration of connected Catalan objects by type
چکیده انگلیسی

Noncrossing set partitions, nonnesting set partitions, Dyck paths, and rooted plane trees are four classes of Catalan objects which carry a notion of type. There exists a product formula which enumerates these objects according to type. We define a notion of ‘connectivity’ for these objects and prove an analogous product formula which counts connected objects by type. Our proof of this product formula is combinatorial and bijective. We extend this to a product formula which counts objects with a fixed type and number of connected components. We relate our product formulas to symmetric functions arising from parking functions. We close by presenting an alternative proof of our product formulas communicated to us by Christian Krattenthaler (2010) [7] which uses generating functions and Lagrange inversion.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 32, Issue 2, February 2011, Pages 330–338
نویسندگان
,