کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4654075 1632813 2010 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Isotopy problems for saddle surfaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Isotopy problems for saddle surfaces
چکیده انگلیسی

Four mutually dependent facts are proven.
• A smooth saddle sphere in S3S3 has at least four inflection arches.
• Each hyperbolic hérisson HH generates an arrangement of disjoint oriented great semicircles on the unit sphere S2S2. On the one hand, the semicircles correspond to the horns of the hérisson. On the other hand, they correspond to the inflection arches of the graph of the support function hHhH.The arrangement contains at least one of the two basic arrangements.
• A new type of a hyperbolic polytope with 4 horns is constructed.
• There exist two non-isotopic smooth hérissons with 4 horns.This is important because of the obvious relationship with extrinsic geometry problems of saddle surfaces, and because of the non-obvious relationship with Alexandrov’s uniqueness conjecture.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 31, Issue 4, May 2010, Pages 1160–1170
نویسندگان
,