کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4654118 1632814 2010 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Some Erdős–Ko–Rado theorems for injections
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Some Erdős–Ko–Rado theorems for injections
چکیده انگلیسی

This paper investigates tt-intersecting families of injections, where two injections a,ba,b from [k][k] to [n]t-intersect if there exists X⊆[k]X⊆[k] with |X|≥t|X|≥t such that a(x)=b(x)a(x)=b(x) for all x∈Xx∈X. We prove that if FF is a 1-intersecting injection family of maximal size then all elements of FF have a fixed image point in common. We show that when nn is large in terms of kk and tt, the set of injections which fix the first tt points is the only tt-intersecting injection family of maximal size, up to permutations of [k][k] and [n][n]. This is not the case for small nn. Indeed, we prove that if kk is large in terms of k−tk−t and n−kn−k, the largest tt-intersecting injection families are obtained from a process of saturation rather than fixing.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 31, Issue 3, April 2010, Pages 839–860
نویسندگان
, ,