کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4654321 1632823 2009 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Upper bounds on the Witten index for supersymmetric lattice models by discrete Morse theory
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Upper bounds on the Witten index for supersymmetric lattice models by discrete Morse theory
چکیده انگلیسی

The Witten index for certain supersymmetric lattice models treated by de Boer, van Eerten, Fendley, and Schoutens, can be formulated as a topological invariant of simplicial complexes, arising as independence complexes of graphs. We prove a general theorem on independence complexes, using discrete Morse theory: if GG is a graph and DD a subset of its vertex set such that G∖DG∖D is a forest, then ∑idimH̃i(Ind(G);Q)≤|Ind(G[D])|. We use the theorem to calculate upper bounds on the Witten index for several classes of lattices. These bounds confirm some of the computer calculations by van Eerten on small lattices.The cohomological method and the 3-rule of Fendley et al. is a special case of when G∖DG∖D lacks edges. We prove a generalized 3-rule and introduce lattices in arbitrary dimensions satisfying it.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 30, Issue 2, February 2009, Pages 429–438
نویسندگان
,