کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4654382 1632829 2008 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the adaptable chromatic number of graphs
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
On the adaptable chromatic number of graphs
چکیده انگلیسی

The adaptable chromatic number   of a graph GG is the smallest integer kk such that for any edge kk-colouring of GG there exists a vertex kk-colouring of GG in which the same colour never appears on an edge and both its endpoints. (Neither the edge nor the vertex colourings are necessarily proper in the usual sense.)We give an efficient characterization of graphs with adaptable chromatic number at most two, and prove that it is NP-hard to decide if a given graph has adaptable chromatic number at most kk, for any k≥3k≥3. The adaptable chromatic number cannot exceed the chromatic number; for complete graphs, the adaptable chromatic number seems to be near the square root of the chromatic number. On the other hand, there are graphs of arbitrarily high girth and chromatic number, in which the adaptable chromatic number coincides with the classical chromatic number. In analogy with well-known properties of chromatic numbers, we also discuss the adaptable chromatic numbers of planar graphs, and of graphs with bounded degree, proving a Brooks-like result.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 29, Issue 4, May 2008, Pages 912–921
نویسندگان
, ,