کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4654385 1632829 2008 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Distributions of points in the unit square and large kk-gons
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Distributions of points in the unit square and large kk-gons
چکیده انگلیسی

We consider a generalization of Heilbronn’s triangle problem by asking, given any integers n≥kn≥k, for the supremum Δk(n)Δk(n) of the minimum area determined by the convex hull of some kk of nn points in the unit square [0,1]2[0,1]2, where the supremum is taken over all distributions of nn points in [0,1]2[0,1]2. Improving the lower bound Δk(n)=Ω(1/n(k−1)/(k−2))Δk(n)=Ω(1/n(k−1)/(k−2)) from [C. Bertram-Kretzberg, T. Hofmeister, H. Lefmann, An algorithm for Heilbronn’s problem, SIAM Journal on Computing 30 (2000) 383–390] and from [W.M. Schmidt, On a problem of Heilbronn, Journal of the London Mathematical Society (2) 4 (1972) 545–550] for k=4k=4, we show that Δk(n)=Ω((logn)1/(k−2)/n(k−1)/(k−2))Δk(n)=Ω((logn)1/(k−2)/n(k−1)/(k−2)) for fixed integers k≥3k≥3 as asked for in [C. Bertram-Kretzberg, T. Hofmeister, H. Lefmann, An algorithm for Heilbronn’s problem, SIAM Journal on Computing 30 (2000) 383–390]. Moreover, we provide a deterministic polynomial time algorithm which finds nn points in [0,1]2[0,1]2, which achieve this lower bound on Δk(n)Δk(n).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 29, Issue 4, May 2008, Pages 946–965
نویسندگان
,