کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4654437 1632825 2008 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Common transversals in the plane: The fractional perspective
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Common transversals in the plane: The fractional perspective
چکیده انگلیسی

A fresh look is taken at the fractional Helly theorem   for line transversals to families of convex sets in the plane. This theorem was first proved in 1980 by Katchalski and Liu [M. Katchalski, A. Liu, Symmetric twins and common transversals, Pacific J. Math. 86 (1980) 513–515]. It asserts that for every integer k≥3k≥3, there exists a real number ρ(k)∈(0,1)ρ(k)∈(0,1) such that the following holds: If KK is a family of nn compact convex sets in the plane, and any kk or fewer members of KK have a line transversal, then some subfamily of KK of size at least ρ(k)n has a line transversal. A lower bound on ρ(k)ρ(k) is obtained which is stronger than the one obtained in [M. Katchalski, A. Liu, Symmetric twins and common transversals, Pacific J. Math. 86 (1980) 513–515]. Also, examples are given to show that a conjecture of Katchalski concerning the value of ρ(3)ρ(3), if true, is the best possible.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 29, Issue 8, November 2008, Pages 1872–1880
نویسندگان
,