کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4654571 | 1632827 | 2008 | 9 صفحه PDF | دانلود رایگان |

Motivated by the works of Ngo and Du [H. Ngo, D. Du, A survey on combinatorial group testing algorithms with applications to DNA library screening, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 55 (2000) 171–182], the notion of pooling spaces was introduced [T. Huang, C. Weng, Pooling spaces and non-adaptive pooling designs, Discrete Mathematics 282 (2004) 163–169] for a systematic way of constructing pooling designs; note that geometric lattices are among pooling spaces. This paper attempts to draw possible connections from finite geometry and distance regular graphs to pooling spaces: including the projective spaces, the affine spaces, the attenuated spaces, and a few families of geometric lattices associated with the orbits of subspaces under finite classical groups, and associated with dd-bounded distance-regular graphs.
Journal: European Journal of Combinatorics - Volume 29, Issue 6, August 2008, Pages 1483–1491