کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4654586 1632820 2009 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The packing chromatic number of infinite product graphs
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
The packing chromatic number of infinite product graphs
چکیده انگلیسی

The packing chromatic number χρ(G)χρ(G) of a graph GG is the smallest integer kk such that the vertex set V(G)V(G) can be partitioned into disjoint classes X1,…,XkX1,…,Xk, where vertices in XiXi have pairwise distance greater than ii. For the Cartesian product of a path and the two-dimensional square lattice it is proved that χρ(Pm□Z2)=∞χρ(Pm□Z2)=∞ for any m≥2m≥2, thus extending the result χρ(Z3)=∞χρ(Z3)=∞ of [A. Finbow, D.F. Rall, On the packing chromatic number of some lattices, Discrete Appl. Math. (submitted for publication) special issue LAGOS’07]. It is also proved that χρ(Z2)≥10χρ(Z2)≥10 which improves the bound χρ(Z2)≥9χρ(Z2)≥9 of [W. Goddard, S.M. Hedetniemi, S.T. Hedetniemi, J.M. Harris, D.F. Rall, Broadcast chromatic numbers of graphs, Ars Combin. 86 (2008) 33–49]. Moreover, it is shown that χρ(G□Z)<∞χρ(G□Z)<∞ for any finite graph GG. The infinite hexagonal lattice HH is also considered and it is proved that χρ(H)≤7χρ(H)≤7 and χρ(Pm□H)=∞χρ(Pm□H)=∞ for m≥6m≥6.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 30, Issue 5, July 2009, Pages 1101–1113
نویسندگان
, , ,