کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4654601 | 1632820 | 2009 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Hexavalent half-arc-transitive graphs of order 4p4p
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A graph is half-arc-transitive if its automorphism group acts transitively on its vertex set and edge set, but not arc set. It was shown by [Y.-Q. Feng, K.S. Wang, C.X. Zhou, Tetravalent half-transitive graphs of order 4p, European J. Combin. 28 (2007) 726–733] that all tetravalent half-arc-transitive graphs of order 4p4p for a prime pp are non-Cayley and such graphs exist if and only if p−1p−1 is divisible by 8. In this paper, it is proved that each hexavalent half-arc-transitive graph of order 4p4p is a Cayley graph and such a graph exists if and only if p−1p−1 is divisible by 12, which is unique for a given order. This result contributes to the classification of half-arc-transitive graphs of order 4p4p of general valencies.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 30, Issue 5, July 2009, Pages 1263–1270
Journal: European Journal of Combinatorics - Volume 30, Issue 5, July 2009, Pages 1263–1270
نویسندگان
Xiuyun Wang, Yan-Quan Feng,