کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4654680 1632824 2009 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Totally frustrated states in the chromatic theory of gain graphs
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Totally frustrated states in the chromatic theory of gain graphs
چکیده انگلیسی

We generalize proper coloring of gain graphs to totally frustrated states, where each vertex takes a value in a set of ‘qualities’ or ‘spins’ that is permuted by the gain group. In standard coloring the group acts trivially or regularly on each orbit (an example is the Potts model), but in the generalization the action is unrestricted. We show that the number of totally frustrated states satisfies a deletion–contraction law. It is not matroidal except in standard coloring, but it does have a formula in terms of fundamental groups of edge subsets. One can generalize chromatic polynomials by constructing spin sets out of repeated orbits. The dichromatic and Whitney-number polynomials of standard coloring generalize to evaluations of an abstract partition function that lives in the edge ring of the gain graph.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 30, Issue 1, January 2009, Pages 133–156
نویسندگان
,