کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4654701 1632838 2007 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Cube packings, second moment and holes
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Cube packings, second moment and holes
چکیده انگلیسی

We consider tilings and packings of Rd by integral translates of cubes [0,2[d[0,2[d, which are 4Zd-periodic. Such cube packings can be described by cliques of an associated graph, which allow us to classify them in dimensions d≤4d≤4. For higher dimensions, we use random methods for generating some examples.Such a cube packing is called non-extendible   if we cannot insert a cube in the complement of the packing. In dimension 3, there is a unique non-extendible cube packing with 4 cubes. We prove that dd-dimensional cube packings with more than 2d−32d−3 cubes can be extended to cube tilings. We also give a lower bound on the number NN of cubes of non-extendible cube packings.Given such a cube packing and z∈Zd, we denote by NzNz the number of cubes inside the 4-cube z+[0,4[dz+[0,4[d and call the second moment   the average of Nz2. We prove that the regular tiling by cubes has maximal second moment and gives a lower bound on the second moment of a cube packing in terms of its density and dimension.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 28, Issue 3, April 2007, Pages 715–725
نویسندگان
, , ,