کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4654712 1632838 2007 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the sandpile group of regular trees
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
On the sandpile group of regular trees
چکیده انگلیسی

The sandpile group of a connected graph is the group of recurrent configurations in the abelian sandpile model on this graph. We study the structure of this group for the case of regular trees. A description of this group is the following: Let T(d,h)T(d,h) be the complete dd-regular tree of depth hh and let VV be the set of its vertices. Denote the adjacency matrix of T(d,h)T(d,h) by AA and consider the modified Laplacian matrix Δ≔dI−AΔ≔dI−A. Let the rows of ΔΔ span the lattice ΛΛ in ZVZV. The sandpile group G(d,h)G(d,h) of T(d,h)T(d,h) is ZV/ΛZV/Λ. We compute the rank, the exponent, the order, and other structural parameters of the abelian group G(d,h)G(d,h). We find a cyclic Hall-subgroup of order (d−1)h(d−1)h. We prove that the rank of G(d,h)G(d,h) is (d−1)h(d−1)h and that G(d,h)G(d,h) contains a subgroup isomorphic to Zd(d−1)h; therefore, for all primes pp dividing dd, the rank of the Sylow pp-subgroup is maximal (equal to the rank of the entire group). We find that the base -(d−1)(d−1) logarithm of the exponent and of the order are asymptotically 3h2/π23h2/π2 and cd(d−1)hcd(d−1)h, respectively. We conjecture an explicit formula for the ranks of all Sylow subgroups.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 28, Issue 3, April 2007, Pages 822–842
نویسندگان
,