کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4654778 | 1632826 | 2008 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Compatible decompositions and block realizations of finite metrics
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Given a metric D defined on a finite set X, we define a finite collection D of metrics on X to be a compatible decomposition of D if any two distinct metrics in D are linearly independent (considered as vectors in RXÃX), D=âdâDd holds, and there exist points x,xâ²âX for any two distinct metrics d,dâ² in D such that d(x,y)dâ²(xâ²,y)=0 holds for every yâX. In this paper, we show that such decompositions are in one-to-one correspondence with (isomorphism classes of) block realizations of D, that is, graph realizations G of D for which G is a block graph and for which every vertex in G not labelled by X has degree at least 3 and is a cut point of G. This generalizes a fundamental result in phylogenetic combinatorics that states that a metric D defined on X can be realized by a tree if and only if there exists a compatible decomposition D of D such that all metrics dâD are split metrics, and lays the foundation for a more general theory of metric decompositions that will be explored in future papers.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 29, Issue 7, October 2008, Pages 1617-1633
Journal: European Journal of Combinatorics - Volume 29, Issue 7, October 2008, Pages 1617-1633
نویسندگان
Andreas W.M. Dress, Katharina T. Huber, Jacobus Koolen, Vincent Moulton,