کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4654923 1632843 2006 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Tree-depth, subgraph coloring and homomorphism bounds
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Tree-depth, subgraph coloring and homomorphism bounds
چکیده انگلیسی

We define the notions tree-depth and upper chromatic number of a graph and show their relevance to local–global problems for graph partitions. In particular we show that the upper chromatic number coincides with the maximal function which can be locally demanded in a bounded coloring of any proper minor closed class of graphs. The rich interplay of these notions is applied to a solution of bounds of proper minor closed classes satisfying local conditions. In particular, we prove the following result:For every graph MM and a finite set FF of connected graphs there exists a (universal) graph U=U(M,F)∈Forbh(F) such that any graph G∈Forbh(F) which does not have MM as a minor satisfies G⟶UG⟶U (i.e. is homomorphic to UU).This solves the main open problem of restricted dualities for minor closed classes and as an application it yields the bounded chromatic number of exact odd powers of any graph in an arbitrary proper minor closed class. We also generalize the decomposition theorem of DeVos et al. [M. DeVos, G. Ding, B. Oporowski, D.P. Sanders, B. Reed, P. Seymour, D. Vertigan, Excluding any graph as a minor allows a low tree-width 2-coloring, J. Combin. Theory Ser. B 91 (2004) 25–41].

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 27, Issue 6, August 2006, Pages 1022–1041
نویسندگان
, ,