کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4656658 1632972 2016 32 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Stability in the Erdős–Gallai Theorems on cycles and paths
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Stability in the Erdős–Gallai Theorems on cycles and paths
چکیده انگلیسی

The Erdős–Gallai Theorem states that for k≥2k≥2, every graph of average degree more than k−2k−2 contains a k-vertex path. This result is a consequence of a stronger result of Kopylov: if k   is odd, k=2t+1≥5k=2t+1≥5, n≥(5t−3)/2n≥(5t−3)/2, and G is an n  -vertex 2-connected graph with at least h(n,k,t):=(k−t2)+t(n−k+t) edges, then G contains a cycle of length at least k   unless G=Hn,k,t:=Kn−E(Kn−t)G=Hn,k,t:=Kn−E(Kn−t).In this paper we prove a stability version of the Erdős–Gallai Theorem: we show that for all n≥3t>3n≥3t>3, and k∈{2t+1,2t+2}k∈{2t+1,2t+2}, every n-vertex 2-connected graph G   with e(G)>h(n,k,t−1)e(G)>h(n,k,t−1) either contains a cycle of length at least k or contains a set of t   vertices whose removal gives a star forest. In particular, if k=2t+1≠7k=2t+1≠7, we show G⊆Hn,k,tG⊆Hn,k,t. The lower bound e(G)>h(n,k,t−1)e(G)>h(n,k,t−1) in these results is tight and is smaller than Kopylov's bound h(n,k,t)h(n,k,t) by a term of n−t−O(1)n−t−O(1).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series B - Volume 121, November 2016, Pages 197–228
نویسندگان
, , ,