کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4656725 | 1632974 | 2016 | 23 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Perfect packings in quasirandom hypergraphs I
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let kâ¥2 and F be a linear k-uniform hypergraph with v vertices. We prove that if n is sufficiently large and v|n, then every quasirandom k-uniform hypergraph on n vertices with constant edge density and minimum degree Ω(nkâ1) admits a perfect F-packing. The case k=2 follows immediately from the blowup lemma of Komlós, Sárközy, and Szemerédi. We also prove positive results for some nonlinear F but at the same time give counterexamples for rather simple F that are close to being linear. Finally, we address the case when the density tends to zero, and prove (in analogy with the graph case) that sparse quasirandom 3-uniform hypergraphs admit a perfect matching as long as their second largest eigenvalue is sufficiently smaller than the largest eigenvalue.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series B - Volume 119, July 2016, Pages 155-177
Journal: Journal of Combinatorial Theory, Series B - Volume 119, July 2016, Pages 155-177
نویسندگان
John Lenz, Dhruv Mubayi,