کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4656725 1632974 2016 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Perfect packings in quasirandom hypergraphs I
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Perfect packings in quasirandom hypergraphs I
چکیده انگلیسی
Let k≥2 and F be a linear k-uniform hypergraph with v vertices. We prove that if n is sufficiently large and v|n, then every quasirandom k-uniform hypergraph on n vertices with constant edge density and minimum degree Ω(nk−1) admits a perfect F-packing. The case k=2 follows immediately from the blowup lemma of Komlós, Sárközy, and Szemerédi. We also prove positive results for some nonlinear F but at the same time give counterexamples for rather simple F that are close to being linear. Finally, we address the case when the density tends to zero, and prove (in analogy with the graph case) that sparse quasirandom 3-uniform hypergraphs admit a perfect matching as long as their second largest eigenvalue is sufficiently smaller than the largest eigenvalue.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series B - Volume 119, July 2016, Pages 155-177
نویسندگان
, ,