کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4656742 1632978 2015 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the chromatic number of general Kneser hypergraphs
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
On the chromatic number of general Kneser hypergraphs
چکیده انگلیسی

In a break-through paper, Lovász [20] determined the chromatic number of Kneser graphs. This was improved by Schrijver [27], by introducing the Schrijver subgraphs of Kneser graphs and showing that their chromatic number is the same as that of Kneser graphs. Alon, Frankl, and Lovász [2] extended Lovász's result to the usual Kneser hypergraphs and one of our main results is to extend this to a new family of general Kneser hypergraphs. Moreover, as a special case, we settle a question from Naserasr and Tardif [26].In 2011, Meunier introduced almost 2-stable Kneser hypergraphs and determined their chromatic number as an approach to a supposition of Ziegler [35] and a conjecture of Alon, Drewnowski, and Łuczak [3]. In this work, our second main result is to improve this by computing the chromatic number of a large family of Schrijver hypergraphs. Our last main result is to prove the existence of a completely multicolored complete bipartite graph in every coloring of a graph which extends a result of Simonyi and Tardos [29].The first two results are proved using a new improvement of the Dol'nikov–Kříž [7] and [18] bound on the chromatic number of general Kneser hypergraphs.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series B - Volume 115, November 2015, Pages 186–209
نویسندگان
, ,