کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4656896 1632987 2014 40 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On judicious bisections of graphs
ترجمه فارسی عنوان
در تقسیم بندی های محاسباتی گراف
کلمات کلیدی
پارتیشن متعادل، پارتیشن جنجالی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
چکیده انگلیسی

A bisection of a graph G   is a bipartition S1S1, S2S2 of V(G)V(G) such that −1⩽|S1|−|S2|⩽1−1⩽|S1|−|S2|⩽1. It is NP-hard to find a bisection S1S1, S2S2 of a graph G   maximizing e(S1,S2)e(S1,S2) (respectively, minimizing max{e(S1),e(S2)}max{e(S1),e(S2)}), where e(S1,S2)e(S1,S2) denotes the number of edges of G   between S1S1 and S2S2, and e(Si)e(Si) denotes the number of edges of G   with both ends in SiSi. There has been algorithmic work on bisections, but very few extremal results are known. Bollobás and Scott conjectured that if G is a graph with m edges and minimum degree at least 2 then G   admits a bisection S1,S2S1,S2 such that max{e(S1),e(S2)}⩽m/3max{e(S1),e(S2)}⩽m/3. In this paper, we confirm this conjecture and show that the triangle is the only extremal graph. Moreover, the bound m/3m/3 cannot be improved to (1/3−ϵ)m(1/3−ϵ)m, for any ϵ>0ϵ>0, by excluding K3K3 or by increasing the minimum degree from 2 to 3.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series B - Volume 106, May 2014, Pages 30–69
نویسندگان
, ,