کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4656899 1632987 2014 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Removable paths and cycles with parity constraints
ترجمه فارسی عنوان
مسیرها و چرخه های قابل جابجایی با محدودیت های همبستگی
کلمات کلیدی
اتصال در نمودار، مسیرها و چرخه های قابل جابجایی، مسیرها و چرخه های غیر جدایی، شباهت در مسیر و چرخه
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
چکیده انگلیسی

We consider the following problem. For every positive integer k   there is a smallest integer f(k)f(k) such that for any two vertices s and t   in a non-bipartite f(k)f(k)-connected graph G, there is an s–t path P in G   with specified parity such that G−V(P)G−V(P) is k-connected.This conjecture is a variant of the well-known conjecture of Lovász with the parity condition. Indeed, this conjecture is strictly stronger. Lovász' conjecture is wide open for k⩾3k⩾3.In this paper, we show that f(1)=5f(1)=5 and 6⩽f(2)⩽86⩽f(2)⩽8.We also consider a conjecture of Thomassen which says that there exists a function f(k)f(k) such that every f(k)f(k)-connected graph with an odd cycle contains an odd cycle C   such that G−V(C)G−V(C) is k  -connected. We show the following strengthening of Thomassen's conjecture for the case k=2k=2. Namely; let G be a 5-connected graph and s be a vertex in G   such that G−sG−s is not bipartite. Then there is an odd cycle C avoiding s   such that G−V(C)G−V(C) is 2-connected.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series B - Volume 106, May 2014, Pages 115–133
نویسندگان
, , ,