کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4656900 1632987 2014 29 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Turán numbers of bipartite graphs plus an odd cycle
ترجمه فارسی عنوان
تعداد اعداد گراف دو طرفه به علاوه یک چرخه عادت
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
چکیده انگلیسی

For an odd integer k  , let Ck={C3,C5,…,Ck}Ck={C3,C5,…,Ck} denote the family of all odd cycles of length at most k   and let CC denote the family of all odd cycles. Erdős and Simonovits [10] conjectured that for every family FF of bipartite graphs, there exists k   such that ex(n,F∪Ck)∼ex(n,F∪C)ex(n,F∪Ck)∼ex(n,F∪C) as n→∞n→∞. This conjecture was proved by Erdős and Simonovits when F={C4}F={C4}, and for certain families of even cycles in [14]. In this paper, we give a general approach to the conjecture using Scott's sparse regularity lemma. Our approach proves the conjecture for complete bipartite graphs K2,tK2,t and K3,3K3,3: we obtain more strongly that for any odd k⩾5k⩾5,ex(n,F∪{Ck})∼ex(n,F∪C) and we show further that the extremal graphs can be made bipartite by deleting very few edges. In contrast, this formula does not extend to triangles – the case k=3k=3 – and we give an algebraic construction for odd t⩾3t⩾3 of K2,tK2,t-free C3C3-free graphs with substantially more edges than an extremal K2,tK2,t-free bipartite graph on n vertices. Our general approach to the Erdős–Simonovits conjecture is effective based on some reasonable assumptions on the maximum number of edges in an m by n   bipartite FF-free graph.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series B - Volume 106, May 2014, Pages 134–162
نویسندگان
, , , ,