کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4656969 1343704 2013 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An algorithm for weighted fractional matroid matching
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
An algorithm for weighted fractional matroid matching
چکیده انگلیسی

Let M be a matroid on ground set E with rank function r. A subset l⊆E is called a line when r(l)∈{1,2}. Given a finite set L of lines in M, a vector is called a fractional matching when ∑l∈Lxla(F)l⩽r(F) for every flat F of M. Here a(F)l is equal to 0 when l∩F=∅, equal to 2 when l⊆F and equal to 1 otherwise. We refer to ∑l∈Lxl as the size of x.It was shown by Chang et al. [S. Chang, D. Llewellyn, J. Vande Vate, Matching 2-lattice polyhedra: finding a maximum vector, Discrete Math. 237 (2001) 29–61], that a maximum size fractional matching can be found in polynomial time. In this paper we give a polynomial time algorithm to find, for given weight function w:L→Q, a maximum weight fractional matching. A simple reference to the equivalence of separation and optimization does not lead to such an algorithm, since no direct method for polynomial time separation is known for this polytope.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series B - Volume 103, Issue 4, July 2013, Pages 509-520