کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4656976 1343705 2012 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Flows and parity subgraphs of graphs with large odd-edge-connectivity
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Flows and parity subgraphs of graphs with large odd-edge-connectivity
چکیده انگلیسی

The odd-edge-connectivity of a graph G is the size of the smallest odd edge cut of G. Tutte conjectured that every odd-5-edge-connected graph admits a nowhere-zero 3-flow. As a weak version of this famous conjecture, Jaeger conjectured that there is an integer k such that every k-edge-connected graph admits a nowhere-zero 3-flow. Jaeger [F. Jaeger, Flows and generalized coloring theorems in graphs, J. Combin. Theory Ser. B 26 (1979) 205–216] proved that every 4-edge-connected graph admits a nowhere-zero 4-flow. Galluccio and Goddyn [A. Galluccio, L.A. Goddyn, The circular flow number of a 6-edge-connected graph is less than four, Combinatorica 22 (2002) 455–459] proved that the flow index of every 6-edge-connected graph is strictly less than 4. This result is further strengthened in this paper that the flow index of every odd-7-edge-connected graph is strictly less than 4. The second main result in this paper solves an open problem that every odd-(2k+1)-edge-connected graph contains k edge-disjoint parity subgraphs. The third main theorem of this paper proves that if the odd-edge-connectivity of a graph G is at least 4⌈log2|V(G)|⌉+1, then G admits a nowhere-zero 3-flow. This result is a partial result to the weak 3-flow conjecture by Jaeger and improves an earlier result by Lai et al. The fourth main result of this paper proves that every odd-(4t+1)-edge-connected graph G has a circular (2t+1) even subgraph double cover. This result generalizes an earlier result of Jaeger.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series B - Volume 102, Issue 4, July 2012, Pages 839-851