کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4656985 1343705 2012 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Congruence conditions, parcels, and Tutte polynomials of graphs and matroids
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Congruence conditions, parcels, and Tutte polynomials of graphs and matroids
چکیده انگلیسی

Let G be a matrix and M(G) be the matroid defined by linear dependence on the set E of column vectors of G. Roughly speaking, a parcel is a subset of pairs (f,g) of functions defined on E to a suitable Abelian group A satisfying a coboundary condition (that the difference f−g is a flow over A of G) and a congruence condition (that an algebraic or combinatorial function of f and g, such as the sum of the size of the supports of f and g, satisfies some congruence condition). We prove several theorems of the form: a linear combination of sizes of parcels, with coefficients roots of unity, equals a multiple of an evaluation of the Tutte polynomial of M(G) at a point (u,v), usually with complex coordinates, satisfying (u−1)(v−1)=|A|.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series B - Volume 102, Issue 4, July 2012, Pages 996-1019