کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4657071 1632990 2010 36 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Confinement of matroid representations to subsets of partial fields
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Confinement of matroid representations to subsets of partial fields
چکیده انگلیسی

Let M be a matroid representable over a (partial) field P and B a matrix representable over a sub-partial field P′⊆P. We say that B confines M to P′ if, whenever a P-representation matrix A of M has a submatrix B, A is a scaled P′-matrix. We show that, under some conditions on the partial fields, on M, and on B, verifying whether B confines M to P′ amounts to a finite check. A corollary of this result is Whittle's Stabilizer Theorem (Whittle, 1999 [34]).A combination of the Confinement Theorem and the Lift Theorem from Pendavingh and Van Zwam (2010) [19], leads to a short proof of Whittle's characterization of the matroids representable over GF(3) and other fields (Whittle, 1997 [33]).We also use a combination of the Confinement Theorem and the Lift Theorem to prove a characterization, in terms of representability over partial fields, of the 3-connected matroids that have k inequivalent representations over GF(5), for k=1,…,6.Additionally we give, for a fixed matroid M, an algebraic construction of a partial field PM and a representation matrix A over PM such that every representation of M over a partial field P is equal to ϕ(A) for some homomorphism ϕ:PM→P. Using the Confinement Theorem we prove an algebraic analog of the theory of free expansions by Geelen, Oxley, Vertigan, and Whittle (2002) [12].

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series B - Volume 100, Issue 6, November 2010, Pages 510-545