کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4657080 1632990 2010 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On several partitioning problems of Bollobás and Scott
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
On several partitioning problems of Bollobás and Scott
چکیده انگلیسی

Judicious partitioning problems on graphs and hypergraphs ask for partitions that optimize several quantities simultaneously. Let G be a hypergraph with mi edges of size i for i=1,2. We show that for any integer k⩾1, V(G) admits a partition into k sets each containing at most m1/k+m2/k2+o(m2) edges, establishing a conjecture of Bollobás and Scott. We also prove that V(G) admits a partition into k⩾3 sets, each meeting at least m1/k+m2/(k−1)+o(m2) edges, which, for large graphs, implies a conjecture of Bollobás and Scott (the conjecture is for all graphs). For k=2, we prove that V(G) admits a partition into two sets each meeting at least m1/2+3m2/4+o(m2) edges, which solves a special case of a more general problem of Bollobás and Scott.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series B - Volume 100, Issue 6, November 2010, Pages 631-649