کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4657095 1343714 2009 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The 3-colored Ramsey number of even cycles
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
The 3-colored Ramsey number of even cycles
چکیده انگلیسی

Denote by R(L,L,L) the minimum integer N such that any 3-coloring of the edges of the complete graph on N vertices contains a monochromatic copy of a graph L. Bondy and Erdős conjectured that when L is the cycle Cn on n vertices, R(Cn,Cn,Cn)=4n−3 for every odd n>3. Łuczak proved that if n is odd, then R(Cn,Cn,Cn)=4n+o(n), as n→∞, and Kohayakawa, Simonovits and Skokan confirmed the Bondy–Erdős conjecture for all sufficiently large values of n.Figaj and Łuczak determined an asymptotic result for the ‘complementary’ case where the cycles are even: they showed that for even n, we have R(Cn,Cn,Cn)=2n+o(n), as n→∞. In this paper, we prove that there exists n1 such that for every even n⩾n1, R(Cn,Cn,Cn)=2n.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series B - Volume 99, Issue 4, July 2009, Pages 690-708