کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4657109 | 1343715 | 2010 | 5 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Partitioning a graph into a cycle and an anticycle, a proof of Lehel's conjecture
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We prove that every graph G has a vertex partition into a cycle and an anticycle (a cycle in the complement of G). Emptyset, singletons and edges are considered as cycles. This problem was posed by Lehel and shown to be true for very large graphs by Łuczak, Rödl and Szemerédi [T. Łuczak, V. Rödl, E. Szemerédi, Partitioning two-colored complete graphs into two monochromatic cycles, Combin. Probab. Comput. 7 (1998) 423–436], and more recently for large graphs by Allen [P. Allen, Covering two-edge-coloured complete graphs with two disjoint monochromatic cycles, Combin. Probab. Comput. 17 (2008) 471–486].
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series B - Volume 100, Issue 2, March 2010, Pages 176-180
Journal: Journal of Combinatorial Theory, Series B - Volume 100, Issue 2, March 2010, Pages 176-180