کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4657118 | 1343716 | 2012 | 22 صفحه PDF | دانلود رایگان |

At the core of the Robertson–Seymour theory of graph minors lies a powerful structure theorem which captures, for any fixed graph H, the common structural features of all the graphs not containing H as a minor. Robertson and Seymour prove several versions of this theorem, each stressing some particular aspects needed at a corresponding stage of the proof of the main result of their theory, the graph minor theorem.We prove a new version of this structure theorem: one that seeks to combine maximum applicability with a minimum of technical ado, and which might serve as a canonical version for future applications in the broader field of graph minor theory. Our proof departs from a simpler version proved explicitly by Robertson and Seymour. It then uses a combination of traditional methods and new techniques to derive some of the more subtle features of other versions as well as further useful properties, with substantially simplified proofs.
Journal: Journal of Combinatorial Theory, Series B - Volume 102, Issue 6, November 2012, Pages 1189-1210