کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4657134 1343718 2009 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Linear connectivity forces large complete bipartite minors
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Linear connectivity forces large complete bipartite minors
چکیده انگلیسی

Let a be an integer. It is proved that for any s and k, there exists a constant N=N(s,k,a) such that every -connected graph with at least N vertices either contains a subdivision of Ka,sk or a minor isomorphic to s disjoint copies of Ka,k. In fact, we prove that connectivity 3a+2 and minimum degree at least are enough while the other conditions cannot be weakened.When s=1 and k=a, this implies that every -connected graph with at least N(a) vertices has a Ka-minor. This is the first result where a linear lower bound on the connectivity in terms of the parameter a forces a Ka-minor. This resolves a conjecture proposed by Mader [W. Mader, Existenz n-fach zusammenhängender Teilgraphen in Graphen genügend grosser Kantendichte, Abh. Math. Sem. Univ. Hamburg 37 (1972) 86–97] and Thomason [A. Thomason, An extremal function for contractions of graphs, Math. Proc. Cambridge Philos. Soc. 95 (1984) 261–265; A. Thomason, The extremal function for complete minors, J. Combin. Theory Ser. B 81 (2001) 318–338]. Our result also generalizes a recent result of Böhme and Kostochka [T. Böhme, A. Kostochka, Disjoint Kr-minors in large graphs with given average degree, European J. Combin. 26 (2005) 289–292], resolves a conjecture of Fon-Der-Flaass [D. Fon-Der-Flaass, private communication], and has several other consequences.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series B - Volume 99, Issue 3, May 2009, Pages 557-582