کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4657148 | 1343719 | 2009 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Weighted enumeration of spanning subgraphs with degree constraints
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The Heilmann–Lieb Theorem on (univariate) matching polynomials states that the polynomial ∑kmk(G)yk has only real nonpositive zeros, in which mk(G) is the number of k-edge matchings of a graph G. There is a stronger multivariate version of this theorem. We provide a general method by which “theorems of Heilmann–Lieb type” can be proved for a wide variety of polynomials attached to the graph G. These polynomials are multivariate generating functions for spanning subgraphs of G with certain weights and constraints imposed, and the theorems specify regions in which these polynomials are nonvanishing. Such theorems have consequences for the absence of phase transitions in certain probabilistic models for spanning subgraphs of G.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series B - Volume 99, Issue 2, March 2009, Pages 347-357
Journal: Journal of Combinatorial Theory, Series B - Volume 99, Issue 2, March 2009, Pages 347-357