کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4657162 | 1343719 | 2009 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Large induced trees in Kr-free graphs
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
For a graph G, let t(G) denote the maximum number of vertices in an induced subgraph of G that is a tree. In this paper, we study the problem of bounding t(G) for graphs which do not contain a complete graph Kr on r vertices. This problem was posed twenty years ago by Erdős, Saks, and Sós. Substantially improving earlier results of various researchers, we prove that every connected triangle-free graph on n vertices contains an induced tree of order . When r⩾4, we also show that for every connected Kr-free graph G of order n. Both of these bounds are tight up to small multiplicative constants, and the first one disproves a recent conjecture of Matoušek and Šámal.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series B - Volume 99, Issue 2, March 2009, Pages 494-501
Journal: Journal of Combinatorial Theory, Series B - Volume 99, Issue 2, March 2009, Pages 494-501