کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4657170 1343720 2010 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Pancyclicity of Hamiltonian and highly connected graphs
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Pancyclicity of Hamiltonian and highly connected graphs
چکیده انگلیسی

A celebrated theorem of Chvátal and Erdős says that G is Hamiltonian if κ(G)⩾α(G), where κ(G) denotes the vertex connectivity and α(G) the independence number of G. Moreover, Bondy suggested that almost any non-trivial conditions for Hamiltonicity of a graph should also imply pancyclicity. Motivated by this, we prove that if κ(G)⩾600α(G) then G is pancyclic. This establishes a conjecture of Jackson and Ordaz up to a constant factor. Moreover, we obtain the more general result that if G is Hamiltonian with minimum degree δ(G)⩾600α(G) then G is pancyclic. Improving an old result of Erdős, we also show that G is pancyclic if it is Hamiltonian and n⩾150α3(G). Our arguments use the following theorem of independent interest on cycle lengths in graphs: if δ(G)⩾300α(G) then G contains a cycle of length ℓ for all 3⩽ℓ⩽δ(G)/81.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series B - Volume 100, Issue 5, September 2010, Pages 456-467