کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4657172 | 1343720 | 2010 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On the half-plane property and the Tutte group of a matroid
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A multivariate polynomial is stable if it is non-vanishing whenever all variables have positive imaginary parts. A matroid has the weak half-plane property (WHPP) if there exists a stable polynomial with support equal to the set of bases of the matroid. If the polynomial can be chosen with all of its non-zero coefficients equal to one then the matroid has the half-plane property (HPP). We describe a systematic method that allows us to reduce the WHPP to the HPP for large families of matroids. This method makes use of the Tutte group of a matroid. We prove that no projective geometry has the WHPP and that a binary matroid has the WHPP if and only if it is regular. We also prove that T8 and R9 fail to have the WHPP.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series B - Volume 100, Issue 5, September 2010, Pages 485-492
Journal: Journal of Combinatorial Theory, Series B - Volume 100, Issue 5, September 2010, Pages 485-492