کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4657196 1343722 2012 4 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Approaching the Moore bound for diameter two by Cayley graphs
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Approaching the Moore bound for diameter two by Cayley graphs
چکیده انگلیسی

The order of a graph of maximum degree d and diameter 2 cannot exceed d2+1, the Moore bound for diameter two. A combination of known results guarantees the existence of regular graphs of degree d, diameter 2, and order at least d2−2d1.525 for all sufficiently large d, asymptotically approaching the Moore bound. The corresponding graphs, however, tend to have a fairly small or trivial automorphism group and the nature of their construction does not appear to allow for modifications that would result in a higher level of symmetry. The best currently available construction of vertex-transitive graphs of diameter 2 and preassigned degree gives order for all degrees of the form d=(3q−1)/2 for prime powers .In this note we show that for an infinite set of degrees d there exist Cayley, and hence vertex-transitive, graphs of degree d, diameter 2, and order d2−O(d3/2).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series B - Volume 102, Issue 2, March 2012, Pages 470-473