کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4657256 1343726 2010 32 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Lifts of matroid representations over partial fields
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Lifts of matroid representations over partial fields
چکیده انگلیسی

There exist several theorems which state that when a matroid is representable over distinct fields F1,…,Fk, it is also representable over other fields. We prove a theorem, the Lift Theorem, that implies many of these results.First, parts of Whittle's characterization of representations of ternary matroids follow from our theorem. Second, we prove the following theorem by Vertigan: if a matroid is representable over both GF(4) and GF(5), then it is representable over the real numbers by a matrix such that the absolute value of the determinant of every nonsingular square submatrix is a power of the golden ratio. Third, we give a characterization of the 3-connected matroids having at least two inequivalent representations over GF(5). We show that these are representable over the complex numbers.Additionally we provide an algebraic construction that, for any set of fields F1,…,Fk, gives the best possible result that can be proven using the Lift Theorem.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series B - Volume 100, Issue 1, January 2010, Pages 36-67