کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4657395 1343735 2006 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The number of nowhere-zero flows on graphs and signed graphs
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
The number of nowhere-zero flows on graphs and signed graphs
چکیده انگلیسی

A nowhere-zero k-flow on a graph Γ is a mapping from the edges of Γ to the set {±1,±2,…,±(k−1)}⊂Z such that, in any fixed orientation of Γ, at each node the sum of the labels over the edges pointing towards the node equals the sum over the edges pointing away from the node. We show that the existence of an integral flow polynomial that counts nowhere-zero k-flows on a graph, due to Kochol, is a consequence of a general theory of inside-out polytopes. The same holds for flows on signed graphs. We develop these theories, as well as the related counting theory of nowhere-zero flows on a signed graph with values in an abelian group of odd order. Our results are of two kinds: polynomiality or quasipolynomiality of the flow counting functions, and reciprocity laws that interpret the evaluations of the flow polynomials at negative integers in terms of the combinatorics of the graph.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series B - Volume 96, Issue 6, November 2006, Pages 901-918