کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4657481 1343740 2007 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Paths and cycles containing given arcs, in close to regular multipartite tournaments
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Paths and cycles containing given arcs, in close to regular multipartite tournaments
چکیده انگلیسی

The global irregularity of a digraph D is defined by ig(D)=max{d+(x),d−(x)}−min{d+(y),d−(y)} over all vertices x and y of D (including x=y). In this paper we prove that if D is a c-partite tournament such that c⩾4 and then there exists a path of length l between any two given vertices for all 42⩽l⩽|V(D)|−1. There are many consequences of this result. For example we show that all sufficiently large regular c-partite tournaments with c⩾4 have a Hamilton cycle through any given arc, and the condition c⩾4 is best possible. Sufficient conditions are furthermore given for when a c-partite tournament with c⩾4 has a Hamilton cycle containing a given path or a set of given arcs. We show that all sufficiently large c-partite tournaments with c⩾5 and bounded ig are vertex-pancyclic and all sufficiently large regular 4-partite tournaments are vertex-pancyclic. Finally we give a lower bound on the number of Hamilton cycles in a c-partite tournament with c⩾4.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series B - Volume 97, Issue 6, November 2007, Pages 949-963