کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4657497 | 1343742 | 2006 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A Tutte decomposition for matrices and bimatroids
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We develop a Tutte decomposition theory for matrices and their combinatorial abstractions, bimatroids. As in the graph or matroid case, this theory is based on a deletion–contraction decomposition. The contribution from the deletion, derived by an inclusion–exclusion argument, consists of three terms. With one more term contributed from the contraction, the decomposition has four terms in general. There are universal decomposition invariants, one of them being a corank–nullity polynomial. Under a simple change of variables, the corank–nullity polynomial equals a weighted characteristic polynomial. This gives an analog of an identity of Tutte. Applications to counting and critical problems on matrices and graphs are given.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series B - Volume 96, Issue 1, January 2006, Pages 50-66
Journal: Journal of Combinatorial Theory, Series B - Volume 96, Issue 1, January 2006, Pages 50-66