کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4657499 1343742 2006 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Extremal connectivity for topological cliques in bipartite graphs
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Extremal connectivity for topological cliques in bipartite graphs
چکیده انگلیسی

Let d(s) be the smallest number such that every graph of average degree >d(s) contains a subdivision of Ks. So far, the best known asymptotic bounds for d(s) are (1+o(1))9s2/64⩽d(s)⩽(1+o(1))s2/2. As observed by Łuczak, the lower bound is obtained by considering bipartite random graphs. Since with high probability the connectivity of these random graphs is about the same as their average degree, a connectivity of (1+o(1))9s2/64 is necessary to guarantee a subdivided Ks. Our main result shows that for bipartite graphs this gives the correct asymptotics. We also prove that in the non-bipartite case a connectivity of (1+o(1))s2/4 suffices to force a subdivision of Ks. Moreover, we slightly improve the constant in the upper bound for d(s) from 1/2 (which is due to Komlós and Szemerédi) to 10/23.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series B - Volume 96, Issue 1, January 2006, Pages 73-99