کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4657503 1343742 2006 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Matroid packing and covering with circuits through an element
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Matroid packing and covering with circuits through an element
چکیده انگلیسی

In 1981, Seymour proved a conjecture of Welsh that, in a connected matroid M, the sum of the maximum number of disjoint circuits and the minimum number of circuits needed to cover M is at most r*(M)+1. This paper considers the set Ce(M) of circuits through a fixed element e such that M/e is connected. Let νe(M) be the maximum size of a subset of Ce(M) in which any two distinct members meet only in {e}, and let θe(M) be the minimum size of a subset of Ce(M) that covers M. The main result proves that νe(M)+θe(M)⩽r*(M)+2 and that if M has no Fano-minor using e, then νe(M)+θe(M)⩽r*(M)+1. Seymour's result follows without difficulty from this theorem and there are also some interesting applications to graphs.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series B - Volume 96, Issue 1, January 2006, Pages 135-158