کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4657503 | 1343742 | 2006 | 24 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Matroid packing and covering with circuits through an element
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In 1981, Seymour proved a conjecture of Welsh that, in a connected matroid M, the sum of the maximum number of disjoint circuits and the minimum number of circuits needed to cover M is at most r*(M)+1. This paper considers the set Ce(M) of circuits through a fixed element e such that M/e is connected. Let νe(M) be the maximum size of a subset of Ce(M) in which any two distinct members meet only in {e}, and let θe(M) be the minimum size of a subset of Ce(M) that covers M. The main result proves that νe(M)+θe(M)⩽r*(M)+2 and that if M has no Fano-minor using e, then νe(M)+θe(M)⩽r*(M)+1. Seymour's result follows without difficulty from this theorem and there are also some interesting applications to graphs.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series B - Volume 96, Issue 1, January 2006, Pages 135-158
Journal: Journal of Combinatorial Theory, Series B - Volume 96, Issue 1, January 2006, Pages 135-158