کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4657724 1344014 2006 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Manifolds obtained by surgery on an infinite number of knots in S3S3
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات هندسه و توپولوژی
پیش نمایش صفحه اول مقاله
Manifolds obtained by surgery on an infinite number of knots in S3S3
چکیده انگلیسی

The construction of 3-manifolds via Dehn surgery on links in S3S3 is an important technique in the classification of 3-manifolds. This paper describes a method of constructing infinite collections of distinct hyperbolic knots in S3S3 which admit a longitudinal surgery yielding the same manifold. In one case, the knots constructed each admit a longitudinal surgery yielding the same hyperbolic manifold; in another case, the knots admit a longitudinal surgery yielding the same toroidal manifold. This answers a question formulated by Kirby in the Kirby problem list [R. Kirby (Ed.), Problems in low-dimensional topology, in: Geometric Topology, American Mathematical Society/International Press, 1997] in the affirmative, which asks if there is a homology 3-sphere, or any 3-manifold, that can be obtained by nn surgery on an infinite number of distinct knots.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology - Volume 45, Issue 4, July 2006, Pages 725–733
نویسندگان
,