کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4663551 1345267 2012 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Some Asymptotic Properties of the Convolution Transforms of Fractal Measures
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Some Asymptotic Properties of the Convolution Transforms of Fractal Measures
چکیده انگلیسی

We study the asymptotic behavior near the boundary of u(x, y) = Ky * μ (x), defined on the half-space +×N by the convolution of an approximate identity Ky(·) (y > 0) and a measure μ on N. The Poisson and the heat kernel are unified as special cases in our setting. We are mainly interested in the relationship between the rate of growth at boundary of u and the s-density of a singular measure μ. Then a boundary limit theorem of Fatou's type for singular measures is proved. Meanwhile, the asymptotic behavior of a quotient of Kμ and Kν is also studied, then the corresponding Fatou-Doob's boundary relative limit is obtained. In particular, some results about the singular boundary behavior of harmonic and heat functions can be deduced simultaneously from ours. At the end, an application in fractal geometry is given.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Acta Mathematica Scientia - Volume 32, Issue 6, November 2012, Pages 2096-2104