کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
466356 697831 2012 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Structured sublinear compressive sensing via belief propagation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر شبکه های کامپیوتری و ارتباطات
پیش نمایش صفحه اول مقاله
Structured sublinear compressive sensing via belief propagation
چکیده انگلیسی

Compressive sensing (CS) is a sampling technique designed for reducing the complexity of sparse data acquisition. One of the major obstacles for practical deployment of CS techniques is the signal reconstruction time and the high storage cost of random sensing matrices. We propose a new structured compressive sensing scheme, based on codes of graphs, that allows for a joint design of structured sensing matrices and logarithmic-complexity reconstruction algorithms. The compressive sensing matrices can be shown to offer asymptotically optimal performance when used in combination with orthogonal matching pursuit (OMP) methods. For reduced-complexity greedy reconstruction schemes, we propose a new family of list-decoding belief propagation algorithms, as well as reinforced and multiple-basis belief propagation (BP) algorithms. Our simulation results indicate that reinforced BP CS schemes offer very good complexity–performance tradeoffs for very sparse signal vectors.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physical Communication - Volume 5, Issue 2, June 2012, Pages 76–90
نویسندگان
, , ,