کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4663614 1345268 2014 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Model selection method based on maximal information coefficient of residuals
ترجمه فارسی عنوان
روش انتخاب مدل براساس ضریب اطلاعات حداکثر مجدد
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
چکیده انگلیسی

The traditional model selection criterions try to make a balance between fitted error and model complexity. Assumptions on the distribution of the response or the noise, which may be misspecified, should be made before using the traditional ones. In this article, we give a new model selection criterion, based on the assumption that noise term in the model is independent with explanatory variables, of minimizing the association strength between regression residuals and the response, with fewer assumptions. Maximal Information Coefficient (MIC), a recently proposed dependence measure, captures a wide range of associations, and gives almost the same score to different type of relationships with equal noise, so MIC is used to measure the association strength. Furthermore, partial maximal information coefficient (PMIC) is introduced to capture the association between two variables removing a third controlling random variable. In addition, the definition of general partial relationship is given.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Acta Mathematica Scientia - Volume 34, Issue 2, March 2014, Pages 579-592